Potential theory and regularity of non- smooth domains

نویسنده

  • Tatiana Toro
چکیده

In this talk we would like to convey the idea that there is a strong relationship between the geometry of the boundary of a domain in Euclidean space and the boundary regularity of the solutions to Laplace's equation. In particular we will show that the doubling properties of the harmonic measure and the "regularity" of the Poisson kernel of a domain in Euclidean space characterize the geometry and the "smoothness" of the boundary of . We introduce some new notions of regularity which are well adapted to study domains whose boundaries are not smooth enough to fit into the classical scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Regularity of the @-neumann Problem: a Survey of the L2-sobolev Theory

The fundamental boundary value problem in the function theory of several complex variables is the ∂-Neumann problem. The L2 existence theory on bounded pseudoconvex domains and the C∞ regularity of solutions up to the boundary on smooth, bounded, strongly pseudoconvex domains were proved in the 1960s. On the other hand, it was discovered quite recently that global regularity up to the boundary ...

متن کامل

Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains

This note establishes regularity estimates for the solution of the Maxwell equations in Lipschitz domains with non-smooth coefficients and minimal regularity assumptions. The argumentation relies on elliptic regularity estimates for the Poisson problem with non-smooth coefficients.

متن کامل

Divergence form operators in Reifenberg flat domains

We study the boundary regularity of solutions of elliptic operators in divergence form with C coefficients or operators which are small perturbations of the Laplacian in non-smooth domains. We show that, as in the case of the Laplacian, there exists a close relationship between the regularity of the corresponding elliptic measure and the geometry of the domain. AMS Subject Classifications: 35J2...

متن کامل

Regularity of optimal transport maps on multiple products of spheres

This article addresses regularity of optimal transport maps for cost=“squared distance” on Riemannian manifolds that are products of arbitrarily many round spheres with arbitrary sizes and dimensions. Such manifolds are known to be non-negatively cross-curved [KM2]. Under boundedness and non-vanishing assumptions on the transfered source and target densities we show that optimal maps stay away ...

متن کامل

Analytic Regularity for Linear Elliptic Systems in Polygons and Polyhedra

We prove weighted anisotropic analytic estimates for solutions of second order elliptic boundary value problems in polyhedra. The weighted analytic classes which we use are the same as those introduced by Guo in 1993 in view of establishing exponential convergence for hp finite element methods in polyhedra. We first give a simple proof of the known weighted analytic regularity in a polygon, rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011